HomeResearch— IRG-2 Publications

— IRG-2 Publications

Structured Materials for Strong Light-Matter Interactions

(acknowledging DMR-1719875, through May 2021)

  1. A. Singh, O. Koksal, N. Tanen, J. McCandless, D. Jena, H. (Grace) Xing, H. Peelaers, and F. Rana, “Intra- and inter-conduction band optical absorption processes in β-Ga2O3,” Appl. Phys. Lett. 117, 072103/1–6 (2020). http://dx.doi.org/10.1063/5.0016341
  2. F. Rana, O. Koksal, and C. Manolatou, “Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials,” Phys. Rev. B 102, 085304 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085304
  3. S. Molesky, P. Chao, and A. W. Rodriguez, “Hierarchical mean-field T operator bounds on electromagnetic scattering: Upper bounds on near-field radiative Purcell enhancement,” Phys. Rev. Research 2, 043398/1–12 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.043398
  4. P. S. Venkataram, R. Messina, J. C. Cuevas, P. Ben-Abdallah, and A. W. Rodriguez, “Mechanical relations between conductive and radiative heat transfer,” Phys. Rev. B 102, 085404 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085404
  5. P. S. Venkataram, J. Hermann, A. Tkatchenko, and A. W. Rodriguez, “Fluctuational electrodynamics in atomic and macroscopic systems: van der Waals interactions and radiative heat transfer,” Phys. Rev. B 102, 085403 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085403
  6. S. Molesky, P. Chao, W. Jin, and A. W. Rodriguez, “Global T operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections,” Phys. Rev. Research 2, 033172 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.033172
  7. P. S. Venkataram, S. Molesky, P. Chao, and A. W. Rodriguez, “Fundamental limits to attractive and repulsive Casimir-Polder forces,” Phys. Rev. A 101, 052115 (2020). http://dx.doi.org/10.1103/PhysRevA.101.052115
  8. C. Khandekar, L. Yang, A. W. Rodriguez, and Z. Jacob, “Quantum nonlinear mixing of thermal photons to surpass the blackbody limit,” Opt. Express 28, 2045 (2020). http://dx.doi.org/10.1364/OE.377278
  9. A. Mukherjee, K. Shayan, L. Li, J. Shan, K. F. Mak, and A. N. Vamivakas, “Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures,” Nature Commun. 11, 5502/1–8 (2020). http://dx.doi.org/10.1038/s41467-020-19262-2
  10. R. S. Daveau, T. Vandekerckhove, A. Mukherjee, Z. Wang, J. Shan, K. F. Mak, A. N. Vamivakas, and G. D. Fuchs, “Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles,” APL Photonics 5, 096105 (2020). http://dx.doi.org/10.1063/5.0013825
  11. M. K. Kroychuk, A. S. Shorokhov, D. F. Yagudin, D. A. Shilkin, D. A. Smirnova, I. Volkovskaya, M. R. Shcherbakov, G. Shvets, and A. A. Fedyanin, “Enhanced Nonlinear Light Generation in Oligomers of Silicon Nanoparticles under Vector Beam Illumination,” Nano Lett. 20, 3471–3477 (2020). http://dx.doi.org/10.1021/acs.nanolett.0c00393
  12. L. van Deurzen, S. Bharadwaj, K. Lee, V. Protasenko, H. Turski, H. (Grace) Xing, and D. Jena, “Enhanced efficiency in bottom tunnel junction InGaN blue LEDs,” In M. Strassburg, J. K. Kim, & M. R. Krames (Eds.), Light-Emitting Devices, Materials, and Applications XXV (pp. 1–7). Presented at the Light-Emitting Devices, Materials, and Applications XXV, Online Only, United States: SPIE (2021). http://dx.doi.org/10.1117/12.2582439
  13. K. Lee, R. Page, V. Protasenko, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “MBE growth and donor doping of coherent ultrawide bandgap AlGaN alloy layers on single-crystal AlN substrates,” Appl. Phys. Lett. 118, 092101/1–9 (2021). http://dx.doi.org/10.1063/5.0037079
  14. G. Muziol, M. Hajdel, H. Turski, K. Nomoto, M. Siekacz, K. Nowakowski-Szkudlarek, M. Żak, D. Jena, H. G. Xing, P. Perlin, and C. Skierbiszewski, “Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy,” Opt. Express 28, 35321/1–9 (2020). http://dx.doi.org/10.1364/OE.405994
  15. S. Bharadwaj, K. Lee, K. Nomoto, A. Hickman, L. van Deurzen, V. Protasenko, H. (Grace) Xing, and D. Jena, “Bottom tunnel junction blue light-emitting field-effect transistors,” Appl. Phys. Lett. 117, 031107/1–6 (2020). http://dx.doi.org/10.1063/5.0009430
  16. P. S. Venkataram, S. Molesky, J. C. Cuevas, and A. W. Rodriguez, “Channel-based algebraic limits to conductive heat transfer,” Phys. Rev. B 102, 085405 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085405
  17. K. Lee, S. Bharadwaj, Y.-T. Shao, L. van Deurzen, V. Protasenko, D. A. Muller, H. G. Xing, and D. Jena, “Light-emitting diodes with AlN polarization-induced buried tunnel junctions: A second look,” Appl. Phys. Lett. 117, 061104/1–6 (2020). http://dx.doi.org/10.1063/5.0015097
  18. Y. Cho, C. S. Chang, K. Lee, M. Gong, K. Nomoto, M. Toita, L. J. Schowalter, D. A. Muller, D. Jena, and H. G. Xing, “Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning,” Appl. Phys. Lett. 116, 172106 (2020). http://dx.doi.org/10.1063/1.5143968
  19. F. Rana, O. Koksal, M. Jung, G. Shvets, A. N. Vamivakas, and C. Manolatou, “Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors,” Phys. Rev. Lett. 126, 127402/1–6 (2021). http://dx.doi.org/10.1103/PhysRevLett.126.127402
  20. Y. Yu, M. Jung, and G. Shvets, “Zero-energy corner states in a non-Hermitian quadrupole insulator,” Phys. Rev. B 103, L041102/1-5 (2021). http://dx.doi.org/10.1103/PhysRevB.103.L041102
  21. Y. Li, Y. Yu, F. Liu, B. Zhang, and G. Shvets, “Topology-Controlled Photonic Cavity Based on the Near-Conservation of the Valley Degree of Freedom,” Phys. Rev. Lett. 125, 213902 (2020). http://dx.doi.org/10.1103/PhysRevLett.125.213902
  22. M. Jung, R. G. Gladstone, and G. Shvets, “Nanopolaritonic second-order topological insulator based on graphene plasmons,” Adv. Photon. 2, 046003/1–8 (2020). http://dx.doi.org/10.1117/1.AP.2.4.046003
  23. M. R. Shcherbakov, R. Lemasters, J. Song, P. Shafirin, T. Lian, H. Harutyunyan, and G. Shvets, “Negative Extinction and Broadband Light-matter Interactions in High-Q Time-variant Metasurfaces,” In Conference on Lasers and Electro-Optics (p. FTh4Q.1). Presented at the CLEO: QELS_Fundamental Science, Washington, DC: OSA (2020). http://dx.doi.org/10.1364/CLEO_QELS.2020.FTh4Q.1
  24. A. Mukherjee, C. Chakraborty, L. Qiu, and A. N. Vamivakas, “Electric field tuning of strain-induced quantum emitters in WSe2,” AIP Advances 10, 075310/1–6 (2020). http://dx.doi.org/10.1063/5.0010395
  25. Y. Cho, J. Encomendero, S.-T. Ho, H. G. Xing, and D. Jena, “N-polar GaN/AlN resonant tunneling diodes,” Appl. Phys. Lett. 117, 143501/1–7 (2020). http://dx.doi.org/10.1063/5.0022143
  26. K. Lee, Y. Cho, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “Surface control and MBE growth diagram for homoepitaxy on single-crystal AlN substrates,” Appl. Phys. Lett. 116, 262102 (2020). http://dx.doi.org/10.1063/5.0010813
  27. S. Poncé, D. Jena, and F. Giustino, “Route to High Hole Mobility in GaN via Reversal of Crystal-Field Splitting,” Phys. Rev. Lett. 123, 096602/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.096602
  28. S. Poncé, D. Jena, and F. Giustino, “Hole mobility of strained GaN from first principles,” Phys. Rev. B 100, 085204/1–16 (2019). http://dx.doi.org/10.1103/PhysRevB.100.085204
  29. J. Moses, N. Flemens, and X. Ding, “Back-conversion suppressed parametric frequency conversion for ultrawide bandwidth and ultrahigh efficiency devices,” In P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XIX (pp. 1–10). Presented at the Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548361
  30. R. Chaudhuri, S. J. Bader, Z. Chen, D. Muller, H. G. Xing, and D. Jena, “MBE Growth of Large‐Area GaN/AlN 2‐dimensional Hole Gas Heterostructures,” Phys. Status Solidi B 1900567/1–5 (2020). http://dx.doi.org/10.1002/pssb.201900567
  31. R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. G. Xing, and D. Jena, “A polarization-induced 2D hole gas in undoped gallium nitride quantum wells,” Science 365, 1454–1457 (2019). http://dx.doi.org/10.1126/science.aau8623
  32. P. S. Venkataram, S. Molesky, W. Jin, and A. W. Rodriguez, “Fundamental Limits to Radiative Heat Transfer: The Limited Role of Nanostructuring in the Near-Field,” Phys. Rev. Lett. 124, 013904/1–6 (2020). http://dx.doi.org/10.1103/PhysRevLett.124.013904
  33. S. Molesky, P. S. Venkataram, W. Jin, and A. W. Rodriguez, “Fundamental limits to radiative heat transfer: Theory,” Phys. Rev. B 101, 035408/1–12 (2020). http://dx.doi.org/10.1103/PhysRevB.101.035408
  34. S. Molesky, W. Jin, P. S. Venkataram, and A. W. Rodriguez, “T Operator Bounds on Angle-Integrated Absorption and Thermal Radiation for Arbitrary Objects,” Phys. Rev. Lett. 123, 257401/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.257401
  35. P. S. Venkataram, J. Hermann, T. J. Vongkovit, A. Tkatchenko, and A. W. Rodriguez, “Impact of nuclear vibrations on van der Waals and Casimir interactions at zero and finite temperature,” Sci. Adv. 5, 1–14 (2019). http://dx.doi.org/10.1126/sciadv.aaw0456
  36. S. H. Huang, R. Delgado, and G. B. Shvets, “Metasurface-enhanced infrared spectroscopy for continuously monitoring the effect of cholesterol depletion in live cells,” In W. Petrich & Z. Huang (Eds.), Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry (pp. 1–24). Presented at the Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2547141
  37. M. R. Shcherbakov, P. Shafirin, and G. Shvets, “Overcoming the efficiency-bandwidth tradeoff for optical harmonics generation using nonlinear time-variant resonators,” Phys. Rev. A 100, 063847/1–8 (2019). http://dx.doi.org/10.1103/PhysRevA.100.063847
  38. M. R. Shcherbakov, R. Lemasters, Z. Fan, J. Song, T. Lian, H. Harutyunyan, and G. Shvets, “Time-variant metasurfaces enable tunable spectral bands of negative extinction,” Optica 6, 1441–1442 (2019). http://dx.doi.org/10.1364/OPTICA.6.001441
  39. M. K. Kroychuk, D. F. Yagudin, A. S. Shorokhov, D. A. Smirnova, I. I. Volkovskaya, M. R. Shcherbakov, G. Shvets, Y. S. Kivshar, and A. A. Fedyanin, “Tailored Nonlinear Anisotropy in Mie‐Resonant Dielectric Oligomers,” Adv. Optical Mater. 7, 1900447/1–7 (2019). http://dx.doi.org/10.1002/adom.201900447
  40. S. Bharadwaj, J. Miller, K. Lee, J. Lederman, M. Siekacz, H. (Grace) Xing, D. Jena, C. Skierbiszewski, and H. Turski, “Enhanced injection efficiency and light output in bottom tunnel-junction light-emitting diodes,” Opt. Express 28, 4489–4500 (2020). http://dx.doi.org/10.1364/OE.384021
  41. H. Turski, S. Bharadwaj, M. Siekacz, G. Muziol, M. Chlipala, M. Zak, M. Hajdel, K. Nowakowski-Szkudlarek, S. Stanczyk, H. Xing, D. Jena, and C. Skierbiszewski, “Monolithically p-down nitride laser diodes and LEDs obtained by MBE using buried tunnel junction design,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XV (p. 34). Presented at the Gallium Nitride Materials and Devices XV, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548996
  42. H. Turski, M. Siekacz, G. Muzioł, M. Hajdel, S. Stańczyk, M. Żak, M. Chlipała, C. Skierbiszewski, S. Bharadwaj, H. G. Xing, and D. Jena, “Nitride LEDs and Lasers with Buried Tunnel Junctions,” ECS J. Solid State Sci. Technol. 9, 015018/1–4 (2020). http://dx.doi.org/10.1149/2.0412001JSS
  43. R. Page, J. Casamento, Y. Cho, S. Rouvimov, H. G. Xing, and D. Jena, “Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy,” Phys. Rev. Materials 3, 064001/1–6 (2019). http://dx.doi.org/10.1103/PhysRevMaterials.3.064001
  44. J. Encomendero, V. Protasenko, F. Rana, D. Jena, and H. G. Xing, “Fighting Broken Symmetry with Doping: Toward Polar Resonant Tunneling Diodes with Symmetric Characteristics,” Phys. Rev. Applied 13, 034048/1–10 (2020). http://dx.doi.org/10.1103/PhysRevApplied.13.034048
  45. R. G. Gladstone, M. Jung, Y. Han, and G. Shvets, “Photonic emulation of two-dimensional materials with antiferromagnetic order,” Phys. Rev. B 100, 245417/1–12 (2019). http://dx.doi.org/10.1103/PhysRevB.100.245417
  46. T. Zhu, G. Khalsa, D. M. Havas, A. S. Gibbs, W. Zhang, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward, “Cation Exchange as a Mechanism To Engineer Polarity in Layered Perovskites,” Chem. Mater. 30, 8915–8924 (2018). http://dx.doi.org/10.1021/acs.chemmater.8b04136
  47. C. Khandekar, R. Messina, and A. W. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Advances 8, 055029/1–9 (2018). http://dx.doi.org/10.1063/1.5018734
  48. C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited],” Photonics Research 6, B82/1-8 (2018). http://dx.doi.org/10.1364/PRJ.6.000B82
  49. M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nature Commun. 10, s41467/1-9 (2019). http://dx.doi.org/10.1038/s41467-019-09313-8
  50. M. Jung, Z. Fan, and G. Shvets, “Midinfrared Plasmonic Valleytronics in Metagate-Tuned Graphene,” Phys. Rev. Lett. 121, 086807/1–6 (2018). http://dx.doi.org/10.1103/PhysRevLett.121.086807
  51. L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nature Commun. 10, 1513/1–5 (2019). http://dx.doi.org/10.1038/s41467-019-09490-6
  52. S. Bharadwaj, S. M. Islam, K. Nomoto, V. Protasenko, A. Chaney, H. (Grace) Xing, and D. Jena, “Bandgap narrowing and Mott transition in Si-doped Al0.7Ga0.3N,” Applied Physics Letters 114, 113501/1–6 (2019). http://dx.doi.org/10.1063/1.5086052
  53. G. Xing, J. Encomendero, and D. Jena, “New physics in GaN resonant tunneling diodes,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XIV (p. 34). Presented at the Gallium Nitride Materials and Devices XIV, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2512638
  54. K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019). http://dx.doi.org/10.1364/OPTICA.6.000542
  55. C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308/1–5 (2019). http://dx.doi.org/10.1103/PhysRevB.99.045308
  56. M. R. Shcherbakov, W.-Z. Chang, J. Moses, and G. B. Shvets, “Enhancing harmonics generation by time-variant metasurfaces (Conference Presentation),” In A. Adibi, S.-Y. Lin, & A. Scherer (Eds.), Photonic and Phononic Properties of Engineered Nanostructures IX (p. 109270f/1–6). Presented at the Photonic and Phononic Properties of Engineered Nanostructures IX, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2517689
  57. J. Encomendero, V. Protasenko, B. Sensale-Rodriguez, P. Fay, F. Rana, D. Jena, and H. G. Xing, “Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures,” Phys. Rev. Applied 11, 034032/1–11 (2019). http://dx.doi.org/10.1103/PhysRevApplied.11.034032
  58. C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure,” Optical Materials Express 9, 1479/1–9 (2019). http://dx.doi.org/10.1364/OME.9.001479
  59. T. Bereau, R. A. DiStasio, A. Tkatchenko, and O. A. von Lilienfeld, “Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning,” J. Chem. Phys. 148, 241706/1–14 (2018). http://dx.doi.org/10.1063/1.5009502
  60. M. Chen, L. Zheng, B. Santra, H.-Y. Ko, R. A. DiStasio Jr, M. L. Klein, R. Car, and X. Wu, “Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer,” Nature Chem. 10, 413–419 (2018). http://dx.doi.org/10.1038/s41557-018-0010-2
  61. R. A. DiStasio, G. Zhang, F. H. Stillinger, and S. Torquato, “Rational design of stealthy hyperuniform two-phase media with tunable order,” Phys. Rev. E 97, 023311/1–11 (2018). http://dx.doi.org/10.1103/PhysRevE.97.023311
  62. M. C. Cao, Y. Han, Z. Chen, Y. Jiang, K. X. Nguyen, E. Turgut, G. D. Fuchs, and D. A. Muller, “Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD,” Microscopy 67, i150-161 (2017). http://dx.doi.org/10.1093/jmicro/dfx123
  63. C. Zhang, M.-Y. Li, J. Tersoff, Y. Han, Y. Su, L.-J. Li, D. A. Muller, and C.-K. Shih, “Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions,” Nature Nanotech. 13, 152–158 (2018). http://dx.doi.org/10.1038/s41565-017-0022-x
  64. M. Z. Miskin, C. Sun, I. Cohen, W. R. Dichtel, and P. L. McEuen, “Measuring and Manipulating the Adhesion of Graphene,” Nano Lett. 18, 449–454 (2018). http://dx.doi.org/10.1021/acs.nanolett.7b04370
  65. S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. DiStasio, and J. Park, “Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain,” Science 359, 1131–1136 (2018). http://dx.doi.org/10.1126/science.aao5360
  66. M. Z. Miskin, K. J. Dorsey, B. Bircan, Y. Han, D. A. Muller, P. L. McEuen, and I. Cohen, “Graphene-based bimorphs for micron-sized, autonomous origami machines,” PNAS 115, 466–470 (2018). http://dx.doi.org/10.1073/pnas.1712889115
  67. Y. Han, M.-Y. Li, G.-S. Jung, M. A. Marsalis, Z. Qin, M. J. Buehler, L.-J. Li, and D. A. Muller, “Sub-nanometre channels embedded in two-dimensional materials,” Nature Mater. 17, 129–133 (2017). http://dx.doi.org/10.1038/nmat5038
Powered By: AcademicsWeb