(acknowledging DMR-1719875, through Spring 2023)
1 | N. Mathur, A. Mukherjee, X. Gao, J. Luo, B. A. McCullian, T. Li, A. N. Vamivakas, and G. D. Fuchs, “Excited-state spin-resonance spectroscopy of V-B (-) defect centers in hexagonal boron nitride,” Nat. Commun. 13, 3233/1–7 (2022). http://dx.doi.org/10.1038/s41467-022-30772-z |
2 | Z. Zhang, Y. Hayashi, T. Tohei, A. Sakai, V. Protasenko, J. Singhal, H. Miyake, H. G. Xing, D. Jena, and Y. Cho, “Molecular beam homoepitaxy of N-polar AlN: Enabling role of aluminum-assisted surface cleaning,” Sci. Adv. 8, eabo6408/1-7 (2022). http://dx.doi.org/10.1126/sciadv.abo6408 |
3 | R. Gladstein Gladstone, S. Dev, J. Allen, M. Allen, and G. Shvets, “Topological edge states of a long-range surface plasmon polariton at the telecommunication wavelength,” Opt. Lett. 47, 4532–4535 (2022). http://dx.doi.org/10.1364/OL.471442 |
4 | A. Barman Ray, K. Liang, and A. N. Vamivakas, “Valley engineering electron-hole liquids in transition metal dichalcogenide monolayers,” Phys. Rev. B 106, 045206/1–5 (2022). http://dx.doi.org/10.1103/PhysRevB.106.045206 |
5 | J. Singhal, R. Chaudhuri, A. Hickman, V. Protasenko, H. G. Xing, and D. Jena, “Toward AlGaN channel HEMTs on AlN: Polarization-induced 2DEGs in AlN/AlGaN/AlN heterostructures,” APL Materials 10, 111120/1–9 (2022). http://dx.doi.org/10.1063/5.0121195 |
6 | L. van Deurzen, R. Page, V. Protasenko, K. Nomoto, H. (Grace) Xing, and D. Jena, “Optically pumped deep-UV multimode lasing in AlGaN double heterostructure grown by molecular beam homoepitaxy,” AIP Advances 12, 035023 (2022). http://dx.doi.org/10.1063/5.0085365 |
7 | J. Z. Kaaret, G. Khalsa, and N. A. Benedek, “A strategy to identify materials exhibiting a large nonlinear phononics response: tuning the ultrafast structural response of LaAlO3 with pressure,” J. Phys.: Condens. Matter 34, 035402/1–9 (2022). http://dx.doi.org/10.1088/1361-648X/ac3038 |
8 | S. Molesky, P. Chao, J. Mohajan, W. Reinhart, H. Chi, and A. W. Rodriguez, “T-operator limits on optical communication: Metaoptics, computation, and input-output transformations,” Phys. Rev. Research 4, 013020/1–15 (2022). http://dx.doi.org/10.1103/PhysRevResearch.4.013020 |
9 | T. Peña, A. Azizimanesh, L. Qiu, A. Mukherjee, A. N. Vamivakas, and S. M. Wu, “Temperature and time stability of process-induced strain engineering on 2D materials,” Journal of Applied Physics 131, 024304/1–8 (2022). http://dx.doi.org/10.1063/5.0075917 |
10 | G. Alvarez-Escalante, R. Page, R. Hu, H. G. Xing, D. Jena, and Z. Tian, “High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films,” APL Materials 10, 011115/1–8 (2022). http://dx.doi.org/10.1063/5.0078155 |
11 | G. Khalsa, N. A. Benedek, and J. Moses, “Ultrafast Control of Material Optical Properties via the Infrared Resonant Raman Effect,” Phys. Rev. X 11, 021067/1–16 (2021). http://dx.doi.org/10.1103/PhysRevX.11.021067 |
12 | J. Encomendero, V. Protasenko, D. Jena, and H. G. Xing, “Influence of collector doping setback in the quantum transport characteristics of GaN/AlN resonant tunneling diodes,” Appl. Phys. Express 14, 122003/1–7 (2021). http://dx.doi.org/10.35848/1882-0786/ac345e |
13 | D. Dean, N. Flemens, D. Heberle, and J. Moses, “Widely tunable second harmonic amplification by noncollinear phase matching in bulk birefringent materials,” In P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XX (p. 116700G/1–10). Presented at the Nonlinear Frequency Generation and Conversion: Materials and Devices XX, Online Only, United States: SPIE (2021). http://dx.doi.org/10.1117/12.2584661 |
14 | N. Flemens, N. Swenson, and J. Moses, “Efficient parametric amplification via simultaneous second harmonic generation,” Opt. Express 29, 30590/1–20 (2021). http://dx.doi.org/10.1364/OE.437864 |
15 | F. Rana, O. Koksal, M. Jung, G. Shvets, and C. Manolatou, “Many-body theory of radiative lifetimes of exciton-trion superposition states in doped two-dimensional materials,” Phys. Rev. B 103, 035424/1–12 (2021). http://dx.doi.org/10.1103/PhysRevB.103.035424 |
16 | M. Jung, Y. Yu, and G. Shvets, “Exact higher-order bulk-boundary correspondence of corner-localized states,” Phys. Rev. B 104, 195437/1–10 (2021). http://dx.doi.org/10.1103/PhysRevB.104.195437 |
17 | F. Rana, O. Koksal, M. Jung, G. Shvets, A. N. Vamivakas, and C. Manolatou, “Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors,” Phys. Rev. Lett. 126, 127402/1–6 (2021). http://dx.doi.org/10.1103/PhysRevLett.126.127402 |
18 | Y. Yu, M. Jung, and G. Shvets, “Zero-energy corner states in a non-Hermitian quadrupole insulator,” Phys. Rev. B 103, L041102/1-5 (2021). http://dx.doi.org/10.1103/PhysRevB.103.L041102 |
19 | O. Koksal, M. Jung, C. Manolatou, A. N. Vamivakas, G. Shvets, and F. Rana, “Structure and dispersion of exciton-trion-polaritons in two-dimensional materials: Experiments and theory,” Phys. Rev. Research 3, 033064/1–10 (2021). http://dx.doi.org/10.1103/PhysRevResearch.3.033064 |
20 | K. S. Olsson, J. Choe, M. Rodriguez-Vega, G. Khalsa, N. A. Benedek, J. He, B. Fang, J. Zhou, G. A. Fiete, and X. Li, “Spin-phonon interaction in yttrium iron garnet,” Phys. Rev. B 104, L020401/1-6 (2021). http://dx.doi.org/10.1103/PhysRevB.104.L020401 |
21 | S. Mallick, G. Khalsa, J. Z. Kaaret, W. Zhang, M. Batuk, A. S. Gibbs, J. Hadermann, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward, “The influence of the 6s2 configuration of Bi3+ on the structures of A′BiNb2O7 (A′ = Rb, Na, Li) layered perovskite oxides,” Dalton Trans. 50, 15359–15369 (2021). http://dx.doi.org/10.1039/D1DT02974F |
22 | R. Chaudhuri, Z. Chen, D. A. Muller, H. G. Xing, and D. Jena, “High-conductivity polarization-induced 2D hole gases in undoped GaN/AlN heterojunctions enabled by impurity blocking layers,” Journal of Applied Physics 130, 025703/1–8 (2021). http://dx.doi.org/10.1063/5.0054321 |
23 | J. Casamento, H. Lee, C. S. Chang, M. F. Besser, T. Maeda, D. A. Muller, H. (Grace) Xing, and D. Jena, “Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1 −xN/GaN heterostructures,” APL Materials 9, 091106/1–10 (2021). http://dx.doi.org/10.1063/5.0054522 |
24 | M. R. Shcherbakov, H. Zhang, M. Tripepi, G. Sartorello, N. Talisa, A. AlShafey, Z. Fan, J. Twardowski, L. A. Krivitsky, A. I. Kuznetsov, E. Chowdhury, and G. Shvets, “Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses,” Nat Commun 12, 4185/1–6 (2021). http://dx.doi.org/10.1038/s41467-021-24450-9 |
25 | M. R. Shcherbakov, G. Sartorello, M. Tripepi, A. AlShafey, M. Bosch, N. Talisa, E. Chowdhury, and G. Shvets, “Laser nanostructuring by tailored free carrier generation in designer semiconductor metasurfaces,” In Conference on Lasers and Electro-Optics (p. SM3B.1/1-2). Presented at the CLEO: Science and Innovations, San Jose, California: OSA (2021). http://dx.doi.org/10.1364/CLEO_SI.2021.SM3B.1 |
26 | R. Lemasters, M. R. Shcherbakov, G. Yang, J. Song, T. Lian, H. Harutyunyan, and G. Shvets, “Deep Optical Switching on Subpicosecond Timescales in an Amorphous Ge Metamaterial,” Adv. Optical Mater. 9, 2100240/1–9 (2021). http://dx.doi.org/10.1002/adom.202100240 |
27 | L. Xiong, Y. Li, M. Jung, C. Forsythe, S. Zhang, A. S. McLeod, Y. Dong, S. Liu, F. L. Ruta, C. Li, K. Watanabe, T. Taniguchi, M. M. Fogler, J. H. Edgar, G. Shvets, C. R. Dean, and D. N. Basov, “Programmable Bloch polaritons in graphene,” Sci. Adv. 7, eabe8087/1-7 (2021). http://dx.doi.org/10.1126/sciadv.abe8087 |
28 | Z. Zhang, J. Encomendero, R. Chaudhuri, Y. Cho, V. Protasenko, K. Nomoto, K. Lee, M. Toita, H. G. Xing, and D. Jena, “Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AlN substrates,” Appl. Phys. Lett. 119, 162104/1–7 (2021). http://dx.doi.org/10.1063/5.0066072 |
29 | L. van Deurzen, S. Bharadwaj, K. Lee, V. Protasenko, H. Turski, H. (Grace) Xing, and D. Jena, “Enhanced efficiency in bottom tunnel junction InGaN blue LEDs,” In M. Strassburg, J. K. Kim, & M. R. Krames (Eds.), Light-Emitting Devices, Materials, and Applications XXV (pp. 1–7). Presented at the Light-Emitting Devices, Materials, and Applications XXV, Online Only, United States: SPIE (2021). http://dx.doi.org/10.1117/12.2582439 |
30 | K. Lee, R. Page, V. Protasenko, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “MBE growth and donor doping of coherent ultrawide bandgap AlGaN alloy layers on single-crystal AlN substrates,” Appl. Phys. Lett. 118, 092101/1–9 (2021). http://dx.doi.org/10.1063/5.0037079 |
31 | Y. Cho, C. S. Chang, K. Lee, M. Gong, K. Nomoto, M. Toita, L. J. Schowalter, D. A. Muller, D. Jena, and H. G. Xing, “Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning,” Appl. Phys. Lett. 116, 172106 (2020). http://dx.doi.org/10.1063/1.5143968 |
32 | K. Lee, S. Bharadwaj, Y.-T. Shao, L. van Deurzen, V. Protasenko, D. A. Muller, H. G. Xing, and D. Jena, “Light-emitting diodes with AlN polarization-induced buried tunnel junctions: A second look,” Appl. Phys. Lett. 117, 061104/1–6 (2020). http://dx.doi.org/10.1063/5.0015097 |
33 | J. Encomendero, V. Protasenko, F. Rana, D. Jena, and H. G. Xing, “Fighting Broken Symmetry with Doping: Toward Polar Resonant Tunneling Diodes with Symmetric Characteristics,” Phys. Rev. Applied 13, 034048/1–10 (2020). http://dx.doi.org/10.1103/PhysRevApplied.13.034048 |
34 | Y. Li, Y. Yu, F. Liu, B. Zhang, and G. Shvets, “Topology-Controlled Photonic Cavity Based on the Near-Conservation of the Valley Degree of Freedom,” Phys. Rev. Lett. 125, 213902 (2020). http://dx.doi.org/10.1103/PhysRevLett.125.213902 |
35 | M. R. Shcherbakov, R. Lemasters, J. Song, P. Shafirin, T. Lian, H. Harutyunyan, and G. Shvets, “Negative Extinction and Broadband Light-matter Interactions in High-Q Time-variant Metasurfaces,” In Conference on Lasers and Electro-Optics (p. FTh4Q.1). Presented at the CLEO: QELS_Fundamental Science, Washington, DC: OSA (2020). http://dx.doi.org/10.1364/CLEO_QELS.2020.FTh4Q.1 |
36 | M. Jung, R. G. Gladstone, and G. Shvets, “Nanopolaritonic second-order topological insulator based on graphene plasmons,” Adv. Photon. 2, 046003/1–8 (2020). http://dx.doi.org/10.1117/1.AP.2.4.046003 |
37 | A. Mukherjee, C. Chakraborty, L. Qiu, and A. N. Vamivakas, “Electric field tuning of strain-induced quantum emitters in WSe2,” AIP Advances 10, 075310/1–6 (2020). http://dx.doi.org/10.1063/5.0010395 |
38 | Y. Cho, J. Encomendero, S.-T. Ho, H. G. Xing, and D. Jena, “N-polar GaN/AlN resonant tunneling diodes,” Appl. Phys. Lett. 117, 143501/1–7 (2020). http://dx.doi.org/10.1063/5.0022143 |
39 | K. Lee, Y. Cho, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “Surface control and MBE growth diagram for homoepitaxy on single-crystal AlN substrates,” Appl. Phys. Lett. 116, 262102 (2020). http://dx.doi.org/10.1063/5.0010813 |
40 | A. Singh, O. Koksal, N. Tanen, J. McCandless, D. Jena, H. (Grace) Xing, H. Peelaers, and F. Rana, “Intra- and inter-conduction band optical absorption processes in β-Ga2O3,” Appl. Phys. Lett. 117, 072103/1–6 (2020). http://dx.doi.org/10.1063/5.0016341 |
41 | J. Moses, N. Flemens, and X. Ding, “Back-conversion suppressed parametric frequency conversion for ultrawide bandwidth and ultrahigh efficiency devices,” In P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XIX (pp. 1–10). Presented at the Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548361 |
42 | R. Chaudhuri, S. J. Bader, Z. Chen, D. Muller, H. G. Xing, and D. Jena, “MBE Growth of Large‐Area GaN/AlN 2‐dimensional Hole Gas Heterostructures,” Phys. Status Solidi B 1900567/1–5 (2020). http://dx.doi.org/10.1002/pssb.201900567 |
43 | F. Rana, O. Koksal, and C. Manolatou, “Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials,” Phys. Rev. B 102, 085304 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085304 |
44 | Sean Molesky, P. Chao, and A. W. Rodriguez, “Hierarchical mean-field T operator bounds on electromagnetic scattering: Upper bounds on near-field radiative Purcell enhancement,” Phys. Rev. Research 2, 043398/1–12 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.043398 |
45 | P. S. Venkataram, R. Messina, J. C. Cuevas, P. Ben-Abdallah, and A. W. Rodriguez, “Mechanical relations between conductive and radiative heat transfer,” Phys. Rev. B 102, 085404 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085404 |
46 | P. S. Venkataram, J. Hermann, A. Tkatchenko, and A. W. Rodriguez, “Fluctuational electrodynamics in atomic and macroscopic systems: van der Waals interactions and radiative heat transfer,” Phys. Rev. B 102, 085403 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085403 |
47 | P. S. Venkataram, S. Molesky, P. Chao, and A. W. Rodriguez, “Fundamental limits to attractive and repulsive Casimir-Polder forces,” Phys. Rev. A 101, 052115 (2020). http://dx.doi.org/10.1103/PhysRevA.101.052115 |
48 | C. Khandekar, L. Yang, A. W. Rodriguez, and Z. Jacob, “Quantum nonlinear mixing of thermal photons to surpass the blackbody limit,” Opt. Express 28, 2045 (2020). http://dx.doi.org/10.1364/OE.377278 |
49 | Sean Molesky, P. Chao, W. Jin, and A. W. Rodriguez, “Global T operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections,” Phys. Rev. Research 2, 033172 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.033172 |
50 | Sean Molesky, P. S. Venkataram, W. Jin, and A. W. Rodriguez, “Fundamental limits to radiative heat transfer: Theory,” Phys. Rev. B 101, 035408/1–12 (2020). http://dx.doi.org/10.1103/PhysRevB.101.035408 |
51 | P. S. Venkataram, S. Molesky, W. Jin, and A. W. Rodriguez, “Fundamental Limits to Radiative Heat Transfer: The Limited Role of Nanostructuring in the Near-Field,” Phys. Rev. Lett. 124, 013904/1–6 (2020). http://dx.doi.org/10.1103/PhysRevLett.124.013904 |
52 | A. Mukherjee, K. Shayan, L. Li, J. Shan, K. F. Mak, and A. N. Vamivakas, “Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures,” Nature Commun. 11, 5502/1–8 (2020). http://dx.doi.org/10.1038/s41467-020-19262-2 |
53 | R. S. Daveau, T. Vandekerckhove, A. Mukherjee, Z. Wang, J. Shan, K. F. Mak, A. N. Vamivakas, and G. D. Fuchs, “Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles,” APL Photonics 5, 096105 (2020). http://dx.doi.org/10.1063/5.0013825 |
54 | M. K. Kroychuk, A. S. Shorokhov, D. F. Yagudin, D. A. Shilkin, D. A. Smirnova, I. Volkovskaya, M. R. Shcherbakov, G. Shvets, and A. A. Fedyanin, “Enhanced Nonlinear Light Generation in Oligomers of Silicon Nanoparticles under Vector Beam Illumination,” Nano Lett. 20, 3471–3477 (2020). http://dx.doi.org/10.1021/acs.nanolett.0c00393 |
55 | S. H. Huang, R. Delgado, and G. B. Shvets, “Metasurface-enhanced infrared spectroscopy for continuously monitoring the effect of cholesterol depletion in live cells,” In W. Petrich & Z. Huang (Eds.), Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry (pp. 1–24). Presented at the Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2547141 |
56 | G. Muziol, M. Hajdel, H. Turski, K. Nomoto, M. Siekacz, K. Nowakowski-Szkudlarek, M. Żak, D. Jena, H. G. Xing, P. Perlin, and C. Skierbiszewski, “Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy,” Opt. Express 28, 35321/1–9 (2020). http://dx.doi.org/10.1364/OE.405994 |
57 | S. Bharadwaj, K. Lee, K. Nomoto, A. Hickman, L. van Deurzen, V. Protasenko, H. (Grace) Xing, and D. Jena, “Bottom tunnel junction blue light-emitting field-effect transistors,” Appl. Phys. Lett. 117, 031107/1–6 (2020). http://dx.doi.org/10.1063/5.0009430 |
58 | H. Turski, S. Bharadwaj, M. Siekacz, G. Muziol, M. Chlipala, M. Zak, M. Hajdel, K. Nowakowski-Szkudlarek, S. Stanczyk, H. Xing, D. Jena, and C. Skierbiszewski, “Monolithically p-down nitride laser diodes and LEDs obtained by MBE using buried tunnel junction design,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XV (p. 34). Presented at the Gallium Nitride Materials and Devices XV, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548996 |
59 | S. Bharadwaj, J. Miller, K. Lee, J. Lederman, M. Siekacz, H. (Grace) Xing, D. Jena, C. Skierbiszewski, and H. Turski, “Enhanced injection efficiency and light output in bottom tunnel-junction light-emitting diodes,” Opt. Express 28, 4489–4500 (2020). http://dx.doi.org/10.1364/OE.384021 |
60 | H. Turski, M. Siekacz, G. Muzioł, M. Hajdel, S. Stańczyk, M. Żak, M. Chlipała, C. Skierbiszewski, S. Bharadwaj, H. G. Xing, and D. Jena, “Nitride LEDs and Lasers with Buried Tunnel Junctions,” ECS J. Solid State Sci. Technol. 9, 015018/1–4 (2020). http://dx.doi.org/10.1149/2.0412001JSS |
61 | P. S. Venkataram, S. Molesky, J. C. Cuevas, and A. W. Rodriguez, “Channel-based algebraic limits to conductive heat transfer,” Phys. Rev. B 102, 085405 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085405 |
62 | K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019). http://dx.doi.org/10.1364/OPTICA.6.000542 |
63 | C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308/1–5 (2019). http://dx.doi.org/10.1103/PhysRevB.99.045308 |
64 | M. R. Shcherbakov, W.-Z. Chang, J. Moses, and G. B. Shvets, “Enhancing harmonics generation by time-variant metasurfaces (Conference Presentation),” In A. Adibi, S.-Y. Lin, & A. Scherer (Eds.), Photonic and Phononic Properties of Engineered Nanostructures IX (p. 109270f/1–6). Presented at the Photonic and Phononic Properties of Engineered Nanostructures IX, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2517689 |
65 | J. Encomendero, V. Protasenko, B. Sensale-Rodriguez, P. Fay, F. Rana, D. Jena, and H. G. Xing, “Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures,” Phys. Rev. Applied 11, 034032/1–11 (2019). http://dx.doi.org/10.1103/PhysRevApplied.11.034032 |
66 | R. G. Gladstone, M. Jung, Y. Han, and G. Shvets, “Photonic emulation of two-dimensional materials with antiferromagnetic order,” Phys. Rev. B 100, 245417/1–12 (2019). http://dx.doi.org/10.1103/PhysRevB.100.245417 |
67 | C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure,” Optical Materials Express 9, 1479/1–9 (2019). http://dx.doi.org/10.1364/OME.9.001479 |
68 | S. Poncé, D. Jena, and F. Giustino, “Hole mobility of strained GaN from first principles,” Phys. Rev. B 100, 085204/1–16 (2019). http://dx.doi.org/10.1103/PhysRevB.100.085204 |
69 | S. Poncé, D. Jena, and F. Giustino, “Route to High Hole Mobility in GaN via Reversal of Crystal-Field Splitting,” Phys. Rev. Lett. 123, 096602/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.096602 |
70 | R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. G. Xing, and D. Jena, “A polarization-induced 2D hole gas in undoped gallium nitride quantum wells,” Science 365, 1454–1457 (2019). http://dx.doi.org/10.1126/science.aau8623 |
71 | Sean Molesky, W. Jin, P. S. Venkataram, and A. W. Rodriguez, “T Operator Bounds on Angle-Integrated Absorption and Thermal Radiation for Arbitrary Objects,” Phys. Rev. Lett. 123, 257401/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.257401 |
72 | P. S. Venkataram, J. Hermann, T. J. Vongkovit, A. Tkatchenko, and A. W. Rodriguez, “Impact of nuclear vibrations on van der Waals and Casimir interactions at zero and finite temperature,” Sci. Adv. 5, 1–14 (2019). http://dx.doi.org/10.1126/sciadv.aaw0456 |
73 | M. R. Shcherbakov, P. Shafirin, and G. Shvets, “Overcoming the efficiency-bandwidth tradeoff for optical harmonics generation using nonlinear time-variant resonators,” Phys. Rev. A 100, 063847/1–8 (2019). http://dx.doi.org/10.1103/PhysRevA.100.063847 |
74 | M. K. Kroychuk, D. F. Yagudin, A. S. Shorokhov, D. A. Smirnova, I. I. Volkovskaya, M. R. Shcherbakov, G. Shvets, Y. S. Kivshar, and A. A. Fedyanin, “Tailored Nonlinear Anisotropy in Mie‐Resonant Dielectric Oligomers,” Adv. Optical Mater. 7, 1900447/1–7 (2019). http://dx.doi.org/10.1002/adom.201900447 |
75 | M. R. Shcherbakov, R. Lemasters, Z. Fan, J. Song, T. Lian, H. Harutyunyan, and G. Shvets, “Time-variant metasurfaces enable tunable spectral bands of negative extinction,” Optica 6, 1441–1442 (2019). http://dx.doi.org/10.1364/OPTICA.6.001441 |
76 | M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nature Commun. 10, s41467/1-9 (2019). http://dx.doi.org/10.1038/s41467-019-09313-8 |
77 | L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nature Commun. 10, 1513/1–5 (2019). http://dx.doi.org/10.1038/s41467-019-09490-6 |
78 | R. Page, J. Casamento, Y. Cho, S. Rouvimov, H. G. Xing, and D. Jena, “Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy,” Phys. Rev. Materials 3, 064001/1–6 (2019). http://dx.doi.org/10.1103/PhysRevMaterials.3.064001 |
79 | S. Bharadwaj, S. M. Islam, K. Nomoto, V. Protasenko, A. Chaney, H. (Grace) Xing, and D. Jena, “Bandgap narrowing and Mott transition in Si-doped Al0.7Ga0.3N,” Applied Physics Letters 114, 113501/1–6 (2019). http://dx.doi.org/10.1063/1.5086052 |
80 | G. Xing, J. Encomendero, and D. Jena, “New physics in GaN resonant tunneling diodes,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XIV (p. 34). Presented at the Gallium Nitride Materials and Devices XIV, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2512638 |
81 | T. Zhu, G. Khalsa, D. M. Havas, A. S. Gibbs, W. Zhang, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward, “Cation Exchange as a Mechanism To Engineer Polarity in Layered Perovskites,” Chem. Mater. 30, 8915–8924 (2018). http://dx.doi.org/10.1021/acs.chemmater.8b04136 |
82 | G. Khalsa and N. A. Benedek, “Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles,” npj Quantum Materials 3, 1–8 (2018). http://dx.doi.org/10.1038/s41535-018-0086-3 |
83 | R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D. S. Katzer, N. Nepal, B. P. Downey, D. A. Muller, H. G. Xing, D. J. Meyer, and D. Jena, “GaN/NbN epitaxial semiconductor/superconductor heterostructures,” Nature 555, 183–189 (2018). http://dx.doi.org/10.1038/nature25768 |
84 | C. Khandekar, R. Messina, and A. W. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Advances 8, 055029/1–9 (2018). http://dx.doi.org/10.1063/1.5018734 |
85 | C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited],” Photonics Research 6, B82/1-8 (2018). http://dx.doi.org/10.1364/PRJ.6.000B82 |
86 | M. Jung, Z. Fan, and G. Shvets, “Midinfrared Plasmonic Valleytronics in Metagate-Tuned Graphene,” Phys. Rev. Lett. 121, 086807/1–6 (2018). http://dx.doi.org/10.1103/PhysRevLett.121.086807 |