HomeResearch— IRG-3 Publications

— IRG-3 Publications

Atomic Membranes for 3D Systems

(acknowledging DMR-1719875, through Spring 2023)

1 S. Das, J. Noh, W. Cao, H. Sun, N. C. Gianneschi, and N. L. Abbott, “Using Nanoscopic Solvent Defects for the Spatial and Temporal Manipulation of Single Assemblies of Molecules,” Nano Lett. 22, 7506–7514 (2022). http://dx.doi.org/10.1021/acs.nanolett.2c02454
2 J. Yu, C. Liang, M. Lee, S. Das, A. Ye, F. Mujid, P. K. Poddar, B. Cheng, N. L. Abbott, and J. Park, “Two-Dimensional Mechanics of Atomically Thin Solids on Water,” Nano Lett. 22, 7180–7186 (2022). http://dx.doi.org/10.1021/acs.nanolett.2c02499
3 M. F. Reynolds, A. J. Cortese, Q. Liu, Z. Zheng, W. Wang, S. L. Norris, S. Lee, M. Z. Miskin, A. C. Molnar, I. Cohen, and P. L. McEuen, “Microscopic robots with onboard digital control,” Sci. Robot. 7, eabq2296/1-11 (2022). http://dx.doi.org/10.1126/scirobotics.abq2296
4 A. Ray, M. Liu, B. Zheng, D. Zhou, V. H. Crespi, M. Terrones, and D. A. Muller, “In-situ Lorentz Imaging of Room-Temperature Ferromagnetic Domains in Monolayer Vanadium-Doped WS2,” Microsc. Microanal. 28, 1780–1782 (2022). http://dx.doi.org/10.1017/S1431927622007048
5 Z. M. Sparrow, B. G. Ernst, T. K. Quady, and R. A. DiStasio, “Uniting Nonempirical and Empirical Density Functional Approximation Strategies Using Constraint-Based Regularization,” J. Phys. Chem. Lett. 13, 6896–6904 (2022). http://dx.doi.org/10.1021/acs.jpclett.2c00643
6 Y. Chen and A. El‐Ghazaly, “Self‐Assembly of Magnetic Nanochains in an Intrinsic Magnetic Dipole Force‐Dominated Regime,” Small 2022, 2205079/1–12 (2022). http://dx.doi.org/10.1002/smll.202205079
7 L. Cestarollo, K. Srinivasan, and A. El-Ghazaly, “Investigation of perpendicular magnetic anisotropy in Pt/Co20Fe60B20/Pt multi-layer structures,” J. Magn. Magn. Mater. 562, 169825/1–6 (2022). http://dx.doi.org/10.1016/j.jmmm.2022.169825
8 C. X. Du, H. A. Zhang, T. G. Pearson, J. Ng, P. L. McEuen, I. Cohen, and M. P. Brenner, “Programming interactions in magnetic handshake materials,” Soft Matter 18, 6404–6410 (2022). http://dx.doi.org/10.1039/D2SM00604A
9 W. Wang, Q. Liu, I. Tanasijevic, M. F. Reynolds, A. J. Cortese, M. Z. Miskin, M. C. Cao, D. A. Muller, A. C. Molnar, E. Lauga, P. L. McEuen, and I. Cohen, “Cilia metasurfaces for electronically programmable microfluidic manipulation,” Nature 605, 681-686/1–19 (2022). http://dx.doi.org/10.1038/s41586-022-04645-w
10 C. Shi, M. C. Cao, S. M. Rehn, S.-H. Bae, J. Kim, M. R. Jones, D. A. Muller, and Y. Han, “Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy,” NPJ Comput. Mater. 8, 114/1–9 (2022). http://dx.doi.org/10.1038/s41524-022-00793-9
11 T. Wyse Jackson, J. Michel, P. Lwin, L. A. Fortier, M. Das, L. J. Bonassar, and I. Cohen, “Structural origins of cartilage shear mechanics,” Sci. Adv. 8, eabk2805/1-12 (2022). http://dx.doi.org/10.1126/sciadv.abk2805
12 C. Tan, D. Y. H. Ho, L. Wang, J. I. A. Li, I. Yudhistira, D. A. Rhodes, T. Taniguchi, K. Watanabe, K. Shepard, P. L. McEuen, C. R. Dean, S. Adam, and J. Hone, “Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor,” Sci. Adv. 8, eabi8481/1-8 (2022). http://dx.doi.org/10.1126/sciadv.abi8481
13 A. J. Mannix, A. Ye, S. H. Sung, A. Ray, F. Mujid, C. Park, M. Lee, J.-H. Kang, R. Shreiner, A. A. High, D. A. Muller, R. Hovden, and J. Park, “Robotic four-dimensional pixel assembly of van der Waals solids,” Nat. Nanotechnol. 1–9 (2022). http://dx.doi.org/10.1038/s41565-021-01061-5
14 P. K. Poddar, Y. Zhong, A. J. Mannix, F. Mujid, J. Yu, C. Liang, J.-H. Kang, M. Lee, S. Xie, and J. Park, “Resist-Free Lithography for Monolayer Transition Metal Dichalcogenides,” Nano Lett. 22, 726–732 (2022). http://dx.doi.org/10.1021/acs.nanolett.1c04081
15 L. Cestarollo, S. Smolenski, and A. El-Ghazaly, “Nanoparticle-Based Magnetorheological Elastomers with Enhanced Mechanical Deflection for Haptic Displays,” ACS Appl. Mater. Interfaces acsami.2c05471 (2022). http://dx.doi.org/10.1021/acsami.2c05471
16 T. Szilvási, H. Yu, J. I. Gold, N. Bao, T. J. Wolter, R. J. Twieg, N. L. Abbott, and M. Mavrikakis, “Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals,” Mater. Horiz. 8, 2050-2056/1–7 (2021). http://dx.doi.org/10.1039/D1MH00035G
17 N. Bao, J. I. Gold, T. Szilvási, H. Yu, R. J. Twieg, M. Mavrikakis, and N. L. Abbott, “Designing chemically selective liquid crystalline materials that respond to oxidizing gases,” J. Mater. Chem. C 9, 6507–6517 (2021). http://dx.doi.org/10.1039/D1TC00544H
18 S. E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh, P. Poddar, A. Ray, C. Park, E. Fransson, Y. Zhong, D. A. Muller, P. Erhart, D. G. Cahill, and J. Park, “Extremely anisotropic van der Waals thermal conductors,” Nature 597, 660–679 (2021). http://dx.doi.org/10.1038/s41586-021-03867-8
19 M. Lee, J.-H. Kang, F. Mujid, J. Suh, A. Ray, C. Park, David. A. Muller, and J. Park, “Atomically Thin, Optically Isotropic Films with 3D Nanotopography,” Nano Lett. 21, 7291–7297 (2021). http://dx.doi.org/10.1021/acs.nanolett.1c02478
20 C. Herbig, C. Zhang, F. Mujid, S. Xie, Z. Pedramrazi, J. Park, and M. F. Crommie, “Local Electronic Properties of Coherent Single-Layer WS2/WSe2 Lateral Heterostructures,” Nano Lett. 21, 2363–2369 (2021). http://dx.doi.org/10.1021/acs.nanolett.0c04204
21 Q. Liu, W. Wang, M. F. Reynolds, M. C. Cao, M. Z. Miskin, T. A. Arias, D. A. Muller, P. L. McEuen, and I. Cohen, “Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics,” Science Robotics 6 (2021). http://dx.doi.org/10.1126/scirobotics.abe6663
22 I. Griniasty, C. Mostajeran, and I. Cohen, “Multivalued Inverse Design: Multiple Surface Geometries from One Flat Sheet,” Phys. Rev. Lett. 127, 128001/1–6 (2021). http://dx.doi.org/10.1103/PhysRevLett.127.128001
23 K. U. Lao, Y. Yang, and R. A. DiStasio, “Electron confinement meet electron delocalization: non-additivity and finite-size effects in the polarizabilities and dispersion coefficients of the fullerenes,” Phys. Chem. Chem. Phys. 23, 5773–5779 (2021). http://dx.doi.org/10.1039/D0CP05638C
24 Y. Xu, A. Ray, Y.-T. Shao, S. Jiang, K. Lee, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, D. A. Muller, K. F. Mak, and J. Shan, “Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3,” Nat. Nanotechnol. 1–17 (2021). http://dx.doi.org/10.1038/s41565-021-01014-y
25 T. Suh, Y. Yang, H. W. Sohn, R. A. DiStasio, and J. R. Engstrom, “Area-selective atomic layer deposition enabled by competitive adsorption,” Journal of Vacuum Science & Technology A 38, 062411/1–11 (2020). http://dx.doi.org/10.1116/6.0000497
26 T. Suh, Y. Yang, P. Zhao, K. U. Lao, H.-Y. Ko, J. Wong, R. A. DiStasio, and J. R. Engstrom, “Competitive Adsorption as a Route to Area-Selective Deposition,” ACS Appl. Mater. Interfaces 1–11 (2020). http://dx.doi.org/10.1021/acsami.9b22065
27 Z. Chen, Y. Jiang, M. Odstrcil, Y. Han, G. Fuchs, and D. Muller, “Efficient Phase-contrast Imaging via Mixed-state Electron Ptychography: From Crystal Structures to Electromagnetic Fields,” Microsc Microanal 26, 26–28 (2020). http://dx.doi.org/10.1017/S143192762001315X
28 L. Ju, L. Wang, X. Li, S. Moon, M. Ozerov, Z. Lu, T. Taniguchi, K. Watanabe, E. Mueller, F. Zhang, D. Smirnov, F. Rana, and P. L. McEuen, “Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene,” Nature Commun. 11, 2941 (2020). http://dx.doi.org/10.1038/s41467-020-16844-y
29 D.-G. Ha, M. Rezaee, Y. Han, S. A. Siddiqui, R. W. Day, L. S. Xie, B. J. Modtland, D. A. Muller, J. Kong, P. Kim, M. Dincă, and M. A. Baldo, “Large Single Crystals of Two-Dimensional π-Conjugated Metal–Organic Frameworks via Biphasic Solution-Solid Growth,” ACS Cent. Sci. 7, 104–109 (2020). http://dx.doi.org/10.1021/acscentsci.0c01488
30 Z. Chen, M. Odstrcil, Y. Jiang, Y. Han, M.-H. Chiu, L.-J. Li, and D. A. Muller, “Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose,” Nature Commun. 11, 2994 (2020). http://dx.doi.org/10.1038/s41467-020-16688-6
31 B. Balasubramanian, P. Manchanda, R. Pahari, Z. Chen, W. Zhang, S. R. Valloppilly, X. Li, A. Sarella, L. Yue, A. Ullah, P. Dev, D. A. Muller, R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, “Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si,” Phys. Rev. Lett. 124, 057201/1–6 (2020). http://dx.doi.org/10.1103/PhysRevLett.124.057201
32 S.-H. Bae, K. Lu, Y. Han, S. Kim, K. Qiao, C. Choi, Y. Nie, H. Kim, H. S. Kum, P. Chen, W. Kong, B.-S. Kang, C. Kim, J. Lee, Y. Baek, J. Shim, J. Park, M. Joo, D. A. Muller, K. Lee, and J. Kim, “Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy,” Nature Nanotechnol. published online, 1-6 (2020). http://dx.doi.org/10.1038/s41565-020-0633-5
33 B. B. Zhou, P. C. Jerger, K.-H. Lee, M. Fukami, F. Mujid, J. Park, and D. D. Awschalom, “Spatiotemporal Mapping of a Photocurrent Vortex in Monolayer MoS2 Using Diamond Quantum Sensors,” Phys. Rev. X 10, 011003/1–14 (2020). http://dx.doi.org/10.1103/PhysRevX.10.011003
34 R. E. Wood, L. T. Lloyd, F. Mujid, L. Wang, M. A. Allodi, H. Gao, R. Mazuski, P.-C. Ting, S. Xie, J. Park, and G. S. Engel, “Evidence for the Dominance of Carrier-Induced Band Gap Renormalization over Biexciton Formation in Cryogenic Ultrafast Experiments on MoS 2 Monolayers,” J. Phys. Chem. Lett. 11, 2658–2666 (2020). http://dx.doi.org/10.1021/acs.jpclett.0c00169
35 R. Wood, L. T. LLoyd, F. Mujid, L. Wang, M. A. Allodi, H. Gao, R. J. Mazuski, P.-C. Ting, S. Xie, J. Park, and G. S. Engel, “Biexcitons do not form in MoS2 monolayers from optical pumping at 6 K,” In M. Betz & A. Y. Elezzabi (Eds.), Ultrafast Phenomena and Nanophotonics XXIV (pp. 1–7). Presented at the Ultrafast Phenomena and Nanophotonics XXIV, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2545200
36 A. J. Cortese, C. L. Smart, T. Wang, M. F. Reynolds, S. L. Norris, Y. Ji, S. Lee, A. Mok, C. Wu, F. Xia, N. I. Ellis, A. C. Molnar, C. Xu, and P. L. McEuen, “Microscopic sensors using optical wireless integrated circuits,” PNAS 117, 9173–9179 (2020). http://dx.doi.org/10.1073/pnas.1919677117
37 B. T. Schaefer, L. Wang, A. Jarjour, K. Watanabe, T. Taniguchi, P. L. McEuen, and K. C. Nowack, “Magnetic field detection limits for ultraclean graphene Hall sensors,” Nature Commun. 11, 4163 (2020). http://dx.doi.org/10.1038/s41467-020-18007-5
38 Y. Han, D. Muller, S. Xie, J. Park, M.-Y. Li, and L.-J. Li, “Uncovering Atomic and Nano-scale Deformations in Two-dimensional Lateral Heterojunctions,” Microsc Microanal 26, 1630–1631 (2020). http://dx.doi.org/10.1017/S1431927620018784
39 H. Gao, J. Suh, M. C. Cao, A. Y. Joe, F. Mujid, K.-H. Lee, S. Xie, P. Poddar, J.-U. Lee, K. Kang, P. Kim, D. A. Muller, and J. Park, “Tuning Electrical Conductance of MoS2 Monolayers through Substitutional Doping,” Nano Lett. 20, 4095–4101 (2020). http://dx.doi.org/10.1021/acs.nanolett.9b05247
40 B. Bircan, M. Z. Miskin, R. J. Lang, M. C. Cao, K. J. Dorsey, M. G. Salim, W. Wang, D. A. Muller, P. L. McEuen, and I. Cohen, “Bidirectional Self-Folding with Atomic Layer Deposition Nanofilms for Microscale Origami,” Nano Lett. 20, 4850–4856 (2020). http://dx.doi.org/doi.org/10.1021/acs.nanolett.0c00824
41 M. Z. Miskin, A. J. Cortese, K. Dorsey, E. P. Esposito, M. F. Reynolds, Q. Liu, M. Cao, D. A. Muller, P. L. McEuen, and I. Cohen, “Electronically integrated, mass-manufactured, microscopic robots,” Nature 584, 557–561 (2020). http://dx.doi.org/10.1038/s41586-020-2626-9
42 P. Deb, M. C. Cao, Y. Han, M. E. Holtz, S. Xie, J. Park, R. Hovden, and D. A. Muller, “Imaging Polarity in Two Dimensional Materials by Breaking Friedel’s Law,” Ultramicroscopy 215, 113019 (2020). http://dx.doi.org/10.1016/j.ultramic.2020.113019
43 D. A. Muller, Z. Chen, Y. Jiang, M. Odstrcil, Y. Han, P. Purohit, M. W. Tate, S. M. Gruner, and V. Elser, “Phase Imaging beyond the Diffraction Limit with Electron Ptychography,” Microsc Microanal 25, 6–7 (2019). http://dx.doi.org/10.1017/S143192761900076X
44 K. A. Spoth, M. J. Zachman, D. A. Muller, and L. F. Kourkoutis, “Cryogenic STEM Imaging and Spectroscopy of Electron Beam Sensitive Materials,” Microsc Microanal 25, 1660–1661 (2019). http://dx.doi.org/10.1017/S1431927619009036
45 A. W. Barnard, M. Zhang, G. S. Wiederhecker, M. Lipson, and P. L. McEuen, “Real-time vibrations of a carbon nanotube,” Nature 566, 89–93 (2019). http://dx.doi.org/10.1038/s41586-018-0861-0
46 R. Niu, C. X. Du, E. Esposito, J. Ng, M. P. Brenner, P. L. McEuen, and I. Cohen, “Magnetic handshake materials as a scale-invariant platform for programmed self-assembly,” PNAS 116, 24402–24407 (2019). http://dx.doi.org/10.1073/pnas.1910332116
47 M. Chiu, H. Tang, C. Tseng, Y. Han, A. Aljarb, J. Huang, Y. Wan, J. Fu, X. Zhang, W. Chang, D. A. Muller, T. Takenobu, V. Tung, and L. Li, “Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter,” Adv. Mater. 31, 1900861/1–8 (2019). http://dx.doi.org/10.1002/adma.201900861
48 Y. Zhong, B. Cheng, C. Park, A. Ray, S. Brown, F. Mujid, J. H. Lee, H. Zhou, J. Suh, K.-H. Lee, A. J. Mannix, K. Kang, S. J. Sibener, D. A. Muller, and J. Park, “Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices,” Science 366, 1379–1384 (2019). http://dx.doi.org/10.1126/science.aax9385
49 K.-H. Lee, S. Chakram, S. E. Kim, F. Mujid, A. Ray, H. Gao, C. Park, Y. Zhong, D. A. Muller, D. I. Schuster, and J. Park, “Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits,” Nano Lett. 19, 8287–8293 (2019). http://dx.doi.org/10.1021/acs.nanolett.9b03886
50 P. Cueva, E. Padget, and D. A. Muller, “Sub-nm Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of Scanning Nanodiffraction 4D-STEM,” Microsc Microanal 25, 1934–1935 (2019). http://dx.doi.org/10.1017/S1431927619010407
51 K. Yuan, R. Yin, X. Li, Y. Han, M. Wu, S. Chen, S. Liu, X. Xu, K. Watanabe, T. Taniguchi, D. A. Muller, J. Shi, P. Gao, X. Wu, Y. Ye, and L. Dai, “Realization of Quantum Hall Effect in Chemically Synthesized InSe,” Adv. Funct. Mater. 29, 1904032/1–8 (2019). http://dx.doi.org/10.1002/adfm.201904032
52 A. K. Yadav, K. X. Nguyen, Z. Hong, P. García-Fernández, P. Aguado-Puente, C. T. Nelson, S. Das, B. Prasad, D. Kwon, S. Cheema, A. I. Khan, C. Hu, J. Íñiguez, J. Junquera, L.-Q. Chen, D. A. Muller, R. Ramesh, and S. Salahuddin, “Spatially resolved steady-state negative capacitance,” Nature 565, 468–471 (2019). http://dx.doi.org/10.1038/s41586-018-0855-y
53 Y. Guo, P.-C. Shen, C. Su, A.-Y. Lu, M. Hempel, Y. Han, Q. Ji, Y. Lin, E. Shi, E. McVay, L. Dou, D. A. Muller, T. Palacios, J. Li, X. Ling, and J. Kong, “Additive manufacturing of patterned 2D semiconductor through recyclable masked growth,” PNAS 116, 3437–3442 (2019). http://dx.doi.org/10.1073/pnas.1816197116
54 W. Xu, T. Li, Z. Qin, Q. Huang, H. Gao, K. Kang, J. Park, M. J. Buehler, J. B. Khurgin, and D. H. Gracias, “Reversible MoS2 Origami with Spatially Resolved and Reconfigurable Photosensitivity,” Nano Lett. 19, 7941–7949 (2019). http://dx.doi.org/10.1021/acs.nanolett.9b03107
55 J. Berry, S. Ristić, S. Zhou, J. Park, and D. J. Srolovitz, “The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials,” Nature Commun. 10, 5210/1–13 (2019). http://dx.doi.org/10.1038/s41467-019-12945-5
56 S. Yu, M. J. Zachman, K. Kang, H. Gao, X. Huang, F. J. DiSalvo, J. Park, L. F. Kourkoutis, and H. D. Abruña, “Atomic‐Scale Visualization of Electrochemical Lithiation Processes in Monolayer MoS2 by Cryogenic Electron Microscopy,” Adv. Energy Mater. 9, 1902773/1–8 (2019). http://dx.doi.org/10.1002/aenm.201902773
57 M. C. Cao, J. Suh, Z. Chen, E. Padgett, C. Park, J. Park, and D. A. Muller, “Diffraction Mapping with a Pixelated Detector to Quantify Crystal Orientation in 3D Structures Made from 2D Materials,” Microsc Microanal 25, 1956–1957 (2019). http://dx.doi.org/10.1017/S1431927619010511
58 Z. Chen, E. Turgut, Y. Jiang, K. X. Nguyen, G. C. Correa, M. J. Stolt, S. Jin, D. C. Ralph, G. D. Fuchs, and D. A. Muller, “Resolving Internal Magnetic Structures of Skyrmions by Lorentz Electron Ptychography,” Microsc Microanal 25, 32–33 (2019). http://dx.doi.org/10.1017/S1431927619000898
59 Y.-T. Shao, Z. Chen, A. Mei, M. Holtz, E. Padgett, D. Schlom, and D. A. Muller, “Decoupling Polarization, Crystal Tilt and Symmetry in Epitaxially-Strained Ferroelectric Thin Films Using 4D-STEM,” Microsc Microanal 25, 1938–1939 (2019). http://dx.doi.org/10.1017/S1431927619010420
60 S. Das, Y. L. Tang, Z. Hong, M. A. P. Gonçalves, M. R. McCarter, C. Klewe, K. X. Nguyen, F. Gómez-Ortiz, P. Shafer, E. Arenholz, V. A. Stoica, S.-L. Hsu, B. Wang, C. Ophus, J. F. Liu, C. T. Nelson, S. Saremi, B. Prasad, A. B. Mei, D. G. Schlom, J. Íñiguez, P. García-Fernández, D. A. Muller, L. Q. Chen, J. Junquera, L. W. Martin, and R. Ramesh, “Observation of room-temperature polar skyrmions,” Nature 568, 368–372 (2019). http://dx.doi.org/10.1038/s41586-019-1092-8
61 K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, “Nonlinear anomalous Hall effect in few-layer WTe2,” Nature Mater. 18, 324–328 (2019). http://dx.doi.org/10.1038/s41563-019-0294-7
62 Y. Yang, K. U. Lao, and R. A. DiStasio, “Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials,” Phys. Rev. Lett. 122, 026001/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.122.026001
63 X. Xu, S. Liu, B. Han, Y. Han, K. Yuan, W. Xu, X. Yao, P. Li, S. Yang, W. Gong, D. A. Muller, P. Gao, Y. Ye, and L. Dai, “Scaling-up Atomically Thin Coplanar Semiconductor–Metal Circuitry via Phase Engineered Chemical Assembly,” Nano Lett. 19, 6845–6852 (2019). http://dx.doi.org/10.1021/acs.nanolett.9b02006
64 K. S. Kwok, Y. Wang, M. C. Cao, H. Shen, Z. He, G. Poirier, B. E. McCandless, K. J. Livi, D. A. Muller, C. Wang, and D. H. Gracias, “Nano-folded Gold Catalysts for Electroreduction of Carbon Dioxide,” Nano Lett. 19, 9154–9159 (2019). http://dx.doi.org/10.1021/acs.nanolett.9b04564
65 K. J. Dorsey, T. G. Pearson, E. Esposito, S. Russell, B. Bircan, Y. Han, M. Z. Miskin, D. A. Muller, I. Cohen, and P. L. McEuen, “Atomic Layer Deposition for Membranes, Metamaterials, and Mechanisms,” Adv. Mater. 31, 1901944/1–6 (2019). http://dx.doi.org/10.1002/adma.201901944
66 Michael F. Reynolds, K. L. McGill, M. A. Wang, H. Gao, F. Mujid, K. Kang, J. Park, M. Z. Miskin, I. Cohen, and P. L. McEuen, “Capillary Origami with Atomically Thin Membranes,” Nano Lett. 19, 6221–6226 (2019). http://dx.doi.org/10.1021/acs.nanolett.9b02281
67 M. F. Reynolds, M. H. D. Guimarães, H. Gao, K. Kang, A. J. Cortese, D. C. Ralph, J. Park, and P. L. McEuen, “MoS2 pixel arrays for real-time photoluminescence imaging of redox molecules,” Sci. Adv. 5, eaat9476/1-9 (2019). http://dx.doi.org/10.1126/sciadv.aat9476
68 H.-Y. Ko, R. A. DiStasio, B. Santra, and R. Car, “Thermal expansion in dispersion-bound molecular crystals,” Physical Review Materials 2, 055603/1–7 (2018). http://dx.doi.org/10.1103/PhysRevMaterials.2.055603
69 T. Bereau, R. A. DiStasio, A. Tkatchenko, and O. A. von Lilienfeld, “Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning,” J. Chem. Phys. 148, 241706/1–14 (2018). http://dx.doi.org/10.1063/1.5009502
70 R. A. DiStasio, G. Zhang, F. H. Stillinger, and S. Torquato, “Rational design of stealthy hyperuniform two-phase media with tunable order,” Phys. Rev. E 97, 023311/1–11 (2018). http://dx.doi.org/10.1103/PhysRevE.97.023311
71 M. Chen, L. Zheng, B. Santra, H.-Y. Ko, R. A. DiStasio Jr, M. L. Klein, R. Car, and X. Wu, “Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer,” Nature Chem. 10, 413–419 (2018). http://dx.doi.org/10.1038/s41557-018-0010-2
72 J. Xiao, H. Zhu, Y. Wang, W. Feng, Y. Hu, A. Dasgupta, Y. Han, Y. Wang, D. A. Muller, L. W. Martin, P. Hu, and X. Zhang, “Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking,” Phys. Rev. Lett. 120, 227601/1–6 (2018). http://dx.doi.org/10.1103/PhysRevLett.120.227601
73 W. S. Leong, Q. Ji, N. Mao, Y. Han, H. Wang, A. J. Goodman, A. Vignon, C. Su, Y. Guo, P.-C. Shen, Z. Gao, D. A. Muller, W. A. Tisdale, and J. Kong, “Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides,” J. Am. Chem. Soc. 140, 12354–12358 (2018). http://dx.doi.org/10.1021/jacs.8b07806
74 Z. Gao, Q. Ji, P.-C. Shen, Y. Han, W. S. Leong, N. Mao, L. Zhou, C. Su, J. Niu, X. Ji, M. M. Goulamaly, D. A. Muller, Y. Li, and J. Kong, “In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide,” ACS Appl. Mater. Interfaces 10, 34401–34408 (2018). http://dx.doi.org/10.1021/acsami.8b13428
75 C. Zhang, M.-Y. Li, J. Tersoff, Y. Han, Y. Su, L.-J. Li, D. A. Muller, and C.-K. Shih, “Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions,” Nature Nanotech. 13, 152–158 (2018). http://dx.doi.org/10.1038/s41565-017-0022-x
76 M. Z. Miskin, C. Sun, I. Cohen, W. R. Dichtel, and P. L. McEuen, “Measuring and Manipulating the Adhesion of Graphene,” Nano Lett. 18, 449–454 (2018). http://dx.doi.org/10.1021/acs.nanolett.7b04370
77 I. R. Storch, R. De Alba, V. P. Adiga, T. S. Abhilash, R. A. Barton, H. G. Craighead, J. M. Parpia, and P. L. McEuen, “Young’s modulus and thermal expansion of tensioned graphene membranes,” Phys. Rev. B 98, 085408/1–8 (2018). http://dx.doi.org/10.1103/PhysRevB.98.085408
78 Y. Han, K. Nguyen, M. Cao, P. Cueva, S. Xie, M. W. Tate, P. Purohit, S. M. Gruner, J. Park, and D. A. Muller, “Strain Mapping of Two-Dimensional Heterostructures with Subpicometer Precision,” Nano Lett. 18, 3746–3751 (2018). http://dx.doi.org/10.1021/acs.nanolett.8b00952
79 K. X. Nguyen, Y. Jiang, M. C. Cao, P. Purohit, A. K. Yadav, J. Junquera, M. W. Tate, S. M. Gruner, R. Ramesh, S. Salahuddin, and D. A. Muller, “Mapping Polarity, Toroidal Order, and the Local Energy Landscape by 4D-STEM,” Microscopy and Microanalysis 24, 176–177 (2018). http://dx.doi.org/10.1017/S143192761800137X
80 S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. DiStasio, and J. Park, “Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain,” Science 359, 1131–1136 (2018). http://dx.doi.org/10.1126/science.aao5360
81 M. Z. Miskin, K. J. Dorsey, B. Bircan, Y. Han, D. A. Muller, P. L. McEuen, and I. Cohen, “Graphene-based bimorphs for micron-sized, autonomous origami machines,” PNAS 115, 466–470 (2018). http://dx.doi.org/10.1073/pnas.1712889115
82 Y. Han, K. Nguyen, M. Cao, P. Cueva, M. W. Tate, P. Purohit, S. Xie, M.-Y. Li, L.-J. Li, J. Park, S. M. Gruner, and D. A. Muller, “Mapping Strain and Relaxation in 2D Heterojunctions with Sub-picometer Precision,” Microscopy and Microanalysis 24, 1588–1589 (2018). http://dx.doi.org/10.1017/S1431927618008425
83 M. C. Cao, J. Suh, E. Padgett, Z. Chen, C. Park, J. Park, and D. A. Muller, “Mapping the 3D Structure of Corrugated ‘Cardboard’ MoS2,” Microscopy and Microanalysis 24, 1584–1585 (2018). http://dx.doi.org/10.1017/S1431927618008401
84 Z. Chen, Y. Jiang, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M. W. Tate, J. Park, S. M. Gruner, V. Elser, and D. A. Muller, “Real-space Demonstration of 0.4 Angstrom Resolution at 80 keV via Electron Ptychography with a High Dynamic Range Pixel Array Detector,” Microsc. Microanal. 24, 194–195 (2018). http://dx.doi.org/10.1017/S1431927618001460
85 Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M. W. Tate, J. Park, S. M. Gruner, V. Elser, and D. A. Muller, “Electron ptychography of 2D materials to deep sub-ångström resolution,” Nature 559, 343–349 (2018). http://dx.doi.org/10.1038/s41586-018-0298-5
86 M. C. Cao, Y. Han, Z. Chen, Y. Jiang, K. X. Nguyen, E. Turgut, G. D. Fuchs, and D. A. Muller, “Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD,” Microscopy 67, i150-161 (2017). http://dx.doi.org/10.1093/jmicro/dfx123
87 Y. Han, M.-Y. Li, G.-S. Jung, M. A. Marsalis, Z. Qin, M. J. Buehler, L.-J. Li, and D. A. Muller, “Sub-nanometre channels embedded in two-dimensional materials,” Nature Mater. 17, 129–133 (2017). http://dx.doi.org/10.1038/nmat5038
Powered By: AcademicsWeb